
Pergamon 
Journal of Structural Geology, Vol. 17, No. 1, pp. 115 to 129,1995 

Copyright 0 1994 Elsevier Science Ltd 
Printed in Great Britain. All rights reserved 

0191~8141/95 $9.50+0.00 

0191_8141(94)E0026-U 

Shape preferred orientation of rigid particles in a viscous matrix: re- 
evaluation to determine kinematic parameters of ductile deformation 

TOSHIAKI MASUDA 

Institute of Geosciences, Shizuoka University, Shizuoka 422, Japan 

KATSUYOSHI MICHIBAYASHI 

Department of Geology, James Cook University, Townsville, Qld. 4811, Australia 

HIROBUMI OHTA* 

Institute of Geosciences, Shizuoka University, Shizuoka 422, Japan 

(Received 19 December 1991; accepted in revised form 14 February 1994) 

Abstract-The development of the shape preferred orientation of rigid elliptical bodies during non-coaxial 
deformation is theoretically simulated in a two-dimensional Newtonian matrix. The angular velocity of a rigid 
elliptical body (@) can be expressed as 

4=$&R’ 2 sm @ cos 0 + cos* r$ cos 0 - (R* - 1) sin2 @ sin 01 

where @ is the angle between the shear plane and the longest axis of the ellipse, R is the aspect ratio of the ellipse, 
V is a constant, and 0 is the newly introduced index angle to describe degree of non-coaxiality between simple 
shear and pure shear defined as tan 0 = .6/f. + and & are simple shear strain rate and pure shear strain rate, 
respectively. The initial distribution pattern of the elliptical bodies is assumed to be random in an R/G diagram, 
and a series of the distribution patterns was calculated using the above equation with increasing deformation at 
varying 0. When deformation is simple shear (i.e. 0 = 0”), all elliptical bodies rotate with various angular 
velocities, resulting in a skewed distribution in the R/q3 diagram. In contrast, for pure shear (i.e. 0 = 90”) all of 
them asymptotically settle their longest axes on a plane perpendicular to the compression axis, resulting in 
strongly concentrated and symmetric distribution patterns in the R/q3 diagram. When deformation is general non- 
coaxial (0” < 0 < 90’7, distribution patterns in the R/q3 diagram change systematically from the pattern similar to 
that of 0 = 0” to that of 0 = 90” with increasing 0. These R/c#J diagrams can be used for estimating the degree of 
non-coaxiality. We analyzed shape preferred orientation of porphyroclasts in two mylonites, and concluded that 
deformation within the mylonites contain a certain amount of pure shear component that superimposes on a 
simple shear component. 

INTRODUCTION 

Rotation of a rigid ellipsoidal particle embedded in a 
Newtonian viscous matrix can be quantified by the 
equations which govern the angular velocity of the 
particle as a function of the shape parameters of the 
particle (axial ratio of the ellipsoid) and the mode of the 
matrix deformation (simple shear, pure shear or a vari- 
able non-coaxiality). Jeffery (1922) was the first to 
establish the general equations and, as an example, gave 
the expression for simple shear deformation. Gay 
(1968), based on Jeffery’s general equations, presented 
an alternate expression for pure shear deformation. 
Ghosh & Sengupta (1973), based on Muskhelishvili’s 
(1953) method for simple problems of elasticity, gave 
another expression for pure shear deformation. Reed & 
Tryggvason (1974) calculated the orientations of the 
longest axis of many ellipsoidal particles subjected to 
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simple and pure shear deformation, and implied that the 
study of the preferred orientation of rigid particles can 
supply valuable information to structural geologists. 
Their analysis, however, appears to be insufficient, 
partly because they only calculated the orientation of 
100 grains with the result that their diagrams of the 
distribution of the longest axes are not comprehensive. 
Also, they dealt separately with only simple and pure 
shear for the matrix deformation. Ghosh & Ramberg 
(1976) presented a complete analysis for matrix defor- 
mation subjected to any combination of simultaneously 
occurring simple shear and pure shear. Therefore, it is 
possible to modify Ghosh & Ramberg’s analysis to 
predict the preferred orientation of many rigid ellip- 
soidal particles for any mode of ductile deformation, 
which was not performed in Ghosh & Ramberg (1976). 
Willis (1977) also presented a general kinematic model 
that can be applied to grains of arbitrary shape, and 
predicted preferred orientation patterns resulting from 
rigid rotation. However, his results are probably not 
easily applicable to naturally deformed rocks, because 
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of difficulties in finding suitable natural data. Passchier 
(1987) expanded the work of Ghosh & Ramberg (1976) 
into a three-dimensional analysis of the nature and 
orientation of asymptotes for rotation of axially sym- 
metric objects in general homogeneous steady flow. He 
stated that populations of rigid objects in ductilely de- 
formed rocks store a significant amount of information, 
not only on the sense of vorticity but also on the vorticity 
number and deviations from plane strain. 

In recent years, the study of mylonitic rocks has 
greatly progressed. One can deduce the shear sense of 
the deformation on the basis of many criteria such as the 
shape of mica ‘fish’, asymmetric pressure shadows, and 
crystallographic preferred orientation of quartz and 
other minerals (e.g. Simpson & Schmid 1983, Bouchez 
et al. 1983, Lister & Snoke 1984). In such mylonitic 
rocks, numerous rigid ellipsoidal grains can be found: 
feldspar porphyroclasts in quartzose mylonites and pyr- 
oxene porphyroclasts in ultramafic mylonites are typical 
examples (e.g. Nicolas & Poirier 1976, Ramsay & Huber 
1987). However, the study of shape preferred orien- 
tation of such porphyroclasts in natural rocks has not 
been particularly fruitful. Oertel (1985) even presented 
a negative view point for the use of rigid rotation in 
structural analysis, since the rheological properties of 
natural materials are presumably not Newtonian. 
Hanmer (1990) made a similar interpretation that theor- 
etical models for rotation of a rigid ellipsoid may not be 
directly applicable for natural rocks although they pro- 
vide insights to study porphyroclast systems. 

The purpose of this paper is to re-evaluate rigid 
rotation as one of the fundamental processes in ductile 
shear zones, and to emphasize that the shape preferred 
orientation pattern due to rigid rotation is a useful clue 
to estimate kinematic parameters of deformation. In this 
paper, theoretical predictions are made of possible 
shape preferred orientation patterns for various combi- 
nations of simultaneous simple and pure shear, based on 
the hydrodynamic equations given by Ghosh & Ram- 
berg (1976). The analyses performed are two- 
dimensional, since the deformation in ductile shear 
zones can be adequately represented by two dimensions, 
and these analyses are much simpler than those in three 
dimensions. Initially, 3600 randomly oriented grains are 
used in order to obtain clear patterns of the shape 
preferred orientation. As an application, shape pre- 
ferred orientation patterns are presented of feldspar and 
garnet porphyroclasts of two natural mylonitic rocks 
collected along the Median Tectonic Line of Japan. 
Attempts are then made to infer kinematic information 
of the mylonitic deformation by comparing the natural 
data with the predicted patterns. 

THEORY 

In the calculation, assumptions are made following 
Ghosh & Ramberg (1976). The model is two- 
dimensional, and a rigid elliptical body is considered to 
be embedded in a two-dimensional Newtonian matrix. 
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(a) Simple Shear (b) Pure Shear (c) General non-coaxial 
deformation 

Fig. 1. Schematic drawing of rigid elliptical bodies in a .deforming 
matrix. i and E are the velocities parallel to the x and z axes at (x = 0, 
z = 1). (a) Matrix deformation consists of sinistral simple shear. The 
elliptical body will rotate counterclockwise. (b) Matrix deformation 
consists of pure shear. The elliptical body will rotate clockwise. (c) 
Matrix deformation consists of the simultaneous superposition of 
simple shear and pure shear. The elliptical body will rotate clockwise, 
keep the same orientation, or rotate counterclockwise depending on 
@. 0 is defined as the angle between the velocity vector at (X = 0, z = I) 

and the x axis. 

The longest axis of each ellipse will rotate, keeping its 
origin at (x = 0, z = 0) in Cartesian co-ordinates. The 
aspect ratio of the ellipse is termed R. The far-field 
simple shear component (y) in the matrix is taken to be 
sinistral, with the shear plane being parallel to the x axis 
(Fig. la). The far field pure shear component (E) in the 
matrix is taken to be compressional in the direction 
parallel to the z axis and extensional in the direction 
parallel to the x axis (Fig. lb). 

The velocities in the far-field matrix can be expressed 
as 

and 
x=ix-jz 

i= -iz i 

(I) 

where X and i are the velocities along the x and z axes, 
respectively, and i, and i are the simple shear strain rate 
and compressional strain rate, respectively (see Fig. 1). 
i, and i are time-independent constants throughout the 
deformation. 

A kinematical index angle, 0, is used as a measure of 
the combination of simple shear and pure shear. 0 is 
defined as tan@ = i/9 (= s, of Ghosh & Ramberg 1976). 
Since X = -f and i = -i at (x = 0, z = l), this index 
angle 0 represents the obliquity of the far-field matrix 
flow against thex axis at (x= 0, z = 1) (Figs. lc and 2a). p 
and i are expressed by 0 as Ij = V cos 0 and i = V sin 0, 

respectively, where V = WT. V represents the 
magnitude of the velocity at (x = 0, z = 1). When the 
angle 0 = 0” or 90”, the flow is either simple shear or 
pure shear, respectively. The co-ordinate system (Fig. 
2a) is different from those by e.g. Passchier (1986), and 
Wallis (1992) (Fig. 2b). The characteristics of our co- 
ordinate system is to give the velocity vector at every 
point by equation (l), and to show the degree of non- 
coaxiality by the ‘anthropocentric’ (Hanmer 1990) index 
angle 0. Since i/X = Z/X on the apophyses (Fig. 2a), 
equation (1) results in z/x = 2il$. As tan0 = z/x on the 
apophyses where 13 is the angle between flow apophyses, 
tan 0 = 2 tan 0. 
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Fig. 2. (a) Co-ordinate system taken in this paper after Ghosh & 
Ramberg (1976): + and .& are the velocity parallel to the x and z axis at 
(x = 0, z = l), respectively. Since X = i and i = i there, 0 is the angle 
between the velocity vector and the x axis. (b) Co-ordinate system 
after Passchier (1986). k,, kz = incremental stretching axes. /3 = angle 

between apophyses. 

According to Jeffery (1922), Gay (1968), and Ghosh 
& Ramberg (1976), the angular velocity of the rigid 
ellipse due to far-field simple shear & and pure shear & 
can be expressed separately as 

A= j&W * sin* @ + cos* @) 

and 

where R is the aspect ratio of the ellipse and C$ is the 
angle between the longest axis of the ellipse and the x 
axis (Fig. 1). Thus, the angular velocity for simul- 
taneously occurring simple shear and pure shear, 4, is 
expressed as 

Cj=&t& 

=&[fR* ’ sm*@+jcos*#-(R*-l)Esin2#] 

- (R* - 1) sin 2@ sin 01. (2) 

This equation shows that C$ is proportional to V, since 
the magnitude of &is controlled by i and i. Its detailed 
interpretations are presented in the next section. 

The non-coaxiality of the deformation is expressed as 

1 

WK 

30” _ 60” 91 
Simple Shear w Pure Shear 

Fig. 3. Measure of non-coaxiality. IV, is the kinematical vorticity 
number, i/f (= s, of Ghosh & Ramberg 1975) is the ratio of pure shear 
strain rate to simple shear rate, and 0 is a kinematical index angle. See 

the text for the explanation of 0. 

the kinematical vorticity number (Wk; Means et al. 
1980). 

where w is the vorticity vector and sl, s2 and s3 are the 
principal strain rates. Ghosh (1987) presented a simple 
expression for W, in two dimensions as 

a12 - a21 

wk = ti Vcz: + az2 + 3(a12 + Use)* 
where all, ~12, a21 an d az2 are constants and in the 
presentcaseu1,=Vsin0,u12=Vcos0,a2i=Oandu22 
= - V sin 0 [compare equation (1) above and equation 
(2) of Ghosh 19871. In the strictest sense, the sign of wk 
should depend on the sense of shear component [see 
equation (2) of Ghosh 19871, and sinistral shear requires 
wk < 0. However, since the sign of wk is not important 
here, the constant aI2 = Vcos 0 is used instead of al2 = 
-Vcos 0 in order to obtain wk > 0 for the case of the 
sinistral shear component. Thus, the kinematical index 
angle is related to the kinematical vorticity number as 

w, = cos 0 1 1 

The relationship between wk and 0 is alternatively 
expressed by following two equations: wk = cos 8 (e.g. 
Passchier 1986) and tan 8 = 2 tan 0, where 8 is the angle 
between flow apophyses (see Fig. 2). wk decreases as 0 
increases with a slight deviation from linearity (Fig. 3). 
In Fig. 3, E/j is also drawn as a function of 0 (i.e. L/i, = 
tan@). The term i/p (= s,) was used as a measure of 
non-coaxiality in Ghosh & Ramberg (1976). In this 
paper however, @ is preferred to i/f and wk as a 
measure of non-coaxiality. Since i/j becomes infinitely 
large when the mode of deformation approaches pure 
shear (Fig. 3), it is inconvenient as a measure of the full 
range of non-coaxiality, from simple shear to pure shear. 
On the other hand, wk is a stricter parameter than 0, 
but it is more difficult to determine the general nature of 
the deformation than 0 (cf. Passchier 1987). The pres- 
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(a)@=00 (Simple Shear) (c)@=20° 

(d)@=40” $ (e)@=60° (Pure Shear) 

Fig. 4. Contour diagrams of angular velocity in the R/q5 diagram. Shaded areas indicate negative angular velocity (4 i 0). 
whereas non-shaded areas indicate positive angular velocity (@ > 0). R, shows the critical aspect ratio of each 0. & is the 
stable critical angles of r$= 0, whereas @, is the unstable critical angles of (p = 0. See the text for a detailed description. It is 
noted that the circular body (R = 1) has angular velocity of 0.5,0.49,0.47,0.38,0.25 and 0 at 0 = 0”. 10”. 20”, 40”, 60” and 

90”, respectively. 

ent analysis is limited to deformations with non- 
pulsating histories (0 5 W, 5 1: e.g. Means et al. 1980; a 
kinematical dilatancy number A = 0, see Passchier 
1991). Deformations with pulsating histories (VV, > 1: 
e.g. Means et al. 1980) are not dealt with. 

It should be noted that the matrix deformation close 
to the ellipse differs from the far-field matrix defor- 
mation. It is implicit that Wk close to the ellipse strongly 
varies from position to position in the matrix, and that 
the overall distribution of W, around the ellipse also 
varies with time or with the rotation of the ellipse. 

ANGULAR VELOCITY 

Angular velocity (4) is non-linearly influenced by 0, 
$ and R, but it is linearly affected by V, as shown by 
equation (2). In the present calculation of angular veloc- 
ity, V = 1 is assumed. The theoretical analysis is not 
disturbed by this assumption, since the value of V only 
controls the time required for the deformation. 4 in 
equation (2) is expressed by a periodic function with 
respect to @ that satisfies 4 (@) = I$ (@ + 180”). This 
means that the angular velocity at @ = -90” is identical 
to that at q!~ = 90”. 

A detailed description of angular velocity 4 as a 

function of 0, C#J and R can be found in Ghosh & 
Ramberg (1976). In this paper, the contour diagrams of 
angular velocity with respect to @ and R (i.e. RI@ 
diagram) are presented for a series of 0 values (Fig. 4; 
cf. Passchier 1987). 

Simple shear (0 = 00) 

When the deformation is of simple shear (i.e. 0 = O’), 
all the ellipses exhibit positive angular velocity (Fig. 4a), 
and rotate always counterclockwise (e.g. Fig. la). The 
angular velocity for an aspect ratio R maximizes at # = 
90” and -9O“, and minimizes at # = o”, irrespective of R 
(Fig. 4a). The contrast between the maximum and 
minimum angular velocities becomes larger as R in- 
creases (Fig. 4a). 

Pure shear (0 = 900) 

For pure shear, the distribution of angular velocity 
again becomes very simple (Fig. 4f). The ellipses for @ > 
0” have negative angular velocity, whereas those for 
C$ < 0” have positive angular velocity. The magnitude of 
the angular velocity is symmetrical with respect to $, and 
it satisfies 4 (@) = -4 (-@). The absolute value of 
angular velocity reaches maxima at @ = 45” and -45” but 
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0" 30’ SO’ 
Simple Shear Pure Shear 

Fig. 5. Critical aspect ratio (R,) for I$, and @,. Contours with a 5” 
interval of 9, and @, are indicated by dotted and solid lines, respect- 
ively. The critical aspect ratio (RJ is shown as enveloping curve of q& 
and @, in R - 0 space (i.e. the boundary between the shaded and 
non-shaded area). Ellipsoidal bodies with R < R, for each 0 rotate 
perpetually, whereas those with R > R, asymptotically settle on the 

critical angle, f$,. 

their directions are opposite one another, whereas the 
angular velocities at @ = 0” and 90” are zero (4 = 0) so 
that ellipses will not rotate at these two angles. 

General non-coaxial deformation (00 < 0 < 90”) 

When the deformation has a simultaneous occurrence 
of both simple and pure shear, the distribution of angu- 
lar velocity in the R/q5 diagram becomes complex (Figs. 
4b-e). There is a critical value of the aspect ratio, which 
is now termed R, for each 0 (Figs. 4b-e; cf. R, in 
Hanmer 1990). The value of R, with respect to 0 is 
shown in Fig. 5, which decrease as 0 increases. If an 
ellipse has smaller aspect ratio than R,, the angular 
velocity is positive (4 > 0), and therefore the ellipse 
always rotates counterclockwise (Figs. 4b-e and 6a). 

On the contrary, if the ellipse has larger aspect ratios 
than R,, the angular velocity will be either positive, zero, 
or negative depending on the angle (#) and, then, the 
ellipse will follow one of three different paths: it rotates 
counterclockwise (4 > 0; the non-shaded area in Figs. 
4b-e; e.g. Fig. 6b), remains stable (4 = 0; the boundary 
between the non-shaded and shaded areas in Figs. 4b-e; 
e.g. Figs. 6d & e), and rotates clockwise (4 < 0; the 
shaded area in Figs. 4b-e; e.g. Fig. 6c), respectively (cf. 
Passchier 1987, Hanmer 1990, Hanmer & Passchier 
1991). 

As shown in Figs. 4(b)-(e), these three paths are 
bounded by the contour line of 4 = 0. This contour line 
results from two different critical values of I$ that theore- 
tically satisfy 4 = 0 in relation to equation (2) for each R. 
In this paper, they are called as @, and Gs (& > #,; e.g. 
Fig. 6). The value of #, and #, are between 0” and 90” 
and their difference becomes larger as R increases (Figs. 
4b-e and 5). When the angle of an ellipse lies between @, 
and @,, the angular velocity is negative so that the ellipse 
rotates clockwise towards #, (e.g. Fig. 6~). When the 
angle is smaller than Gs or larger than @,, the angular 
velocity is positive so that the ellipse rotates counter- 
clockwise towards & (Fig. 6b). Consequently, most 

ellipses, that satisfy R > R,, will rotate asymptotically 
towards r@, during non-coaxial deformation. 

The only exception is the ellipses which are oriented 
exactly parallel to @, before deformation (e.g. Fig. 6e). 
As these ellipses have # = 0, they do not change their 
orientation during deformation. However, if the orien- 
tation of an ellipse is only very slightly oblique to @,, the 
ellipse will rotate towards #,. This is because @, is the 
stable critical angle, whereas #, is the unstable critical 
angle. 4, is the orientation of the rest position of 
Hanmer (1990) and Hanmer & Passchier (1991), and 
stable sink position of Passchier (1987). 

In the special case when R = R.,, there is only one 
value of $ that satisfies the relation @ = 0 in equation (2). 
In this case GU is considered to be identical to I$,, and 
there is no angle for ellipse to have negative angular 
vorticity (Figs. 4b-e and 5). 

CALCULATION OF THE CHANGE OF 4 WITH 
DEFORMATION 

Taking an ellipse oriented with @a, the new orien- 
tation (&) of the ellipse after a very short time (dt) can 
be expressed as 

where & is angular velocity at @ = Go. In the same 
manner, the orientation of the ellipse after the next dt is 
known as 

where G2 is the new orientation and & is angular velocity 
at @ = $, . As dt -+ 0, the manner in which @ changes can 
be smoothly traced by repeating this calculation. The 
above calculation has been repeated, setting dt = 0.01. 

Simple shear strain y and pure shear strain E are 
defined as 

y = ljdt 

and 

E = idt, 

respectively. Therefore, the magnitude of strain for 
general deformation can be analogously defined as 

D'= mdt. 
i 

D’ is directly given by a number of repetitions of the 
above calculation, and is exactly equivalent to y or E 
when the deformation is of simple shear or pure shear, 
respectively. In our case D’ = 1 is reached by 100 

repetitions of the calculation, as we set V = w = 
1 and dt = 0.01. Strain magnitude, E, (Nadai 1963), is 
given by 
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Fig. 6. Schematic drawing of rigid elliptical bodies in a non-coaxial deforming matrix (0” < 0 < 90”). The simple shear 
component is sinistral. (a) If the elliptical body has an aspect ratio smaller than the critical one (i.e. R < Rc), angular velocity 
is always positive (9 > 0) so that it will always rotate counterclockwise. (b) & (c) The elliptical body has an aspect ratio 
greater then the critical one (i.e. R > R,). Its rotation depends on the angle of its longest axis (@) with respect to the critical 
angles of @, and 9,. (b) If the angle is smaller than 9, or greater than c#J,, angular velocity is positive (shaded areas) so that 
the elliptical body will rotate counterclockwise towards 9,. (c) If the angle of its longest axis is between 4 and @,, , angular 
velocity is negative (shaded area) so that the elliptical body will rotate clockwise towards @, (i.e. back rotation). (d) & (e) 
Special cases happen when the elliptical body has an aspect ratio greater than or equal to the critical angle (i.e. R 5> R,). (d) 
If the angle of its longest axis is equal to @,, the ellipse will not rotate at all. (e) If the angle is exactly equal to &, it will not 

rotate, either. However, even if the angle is only slightly oblique to @, it will rotate towards 9, 

E,= & [(El - &*)2 + (&* - &J2 + (&3 - &1)2]1’2 

where Ed, &2 and c3 are natural or logarithmic principal 
strains. In our case, .s2 = 0 and .si = -c3. Therefore 

E,=lh~~=l//ZhR, (3) 

where RI is the semi-major axis of the strain ellipse far 
from the rigid ellipse, which was given by Ghosh (1987): 

As y = D’ cos 0 and s, = sin O/cos 0, 

R,=~[(4+[4+~]sinh’(D’sinO)JI/ Simple shear (0 = 0’) 

sinh*(D’sin@) (4) 
In the case of simple shear (0 = 0”; Fig. 7) where all 

the ellipses rotate counterclockwise during deformation 
(e.g. Fig. la), the concentration pattern varies gradually 
and becomes complex as time or strain increases. At low 
strains (y 5 3), an obvious concentration of 4 is located 
around - 10” to -20”; the concentration is more promi- 
nent for larger R (e.g. y = 3 in Fig. 7). 

equations (3) and (4) give the relationship between E, 
and D’. 

COMPUTER MODELLING OF PREFERRED 
ORIENTATION OF ELLIPSES 

It is assumed that the angular velocities of ellipses, 
which are dealt with in the calculation, are individually 

controlled by equation (2), with no interaction among 
them. The longest axes of the ellipses before defor- 
mation are set to be homogeneously spaced from $ = 
-90” to 90” with a 0.2 interval and R from 1 to 9 with a 0.2 
interval. Thus, the total numbers of the ellipses in the 
RI@ diagram are 3600 grains (see Fig. 7a). 

As deformation occurs the ellipses rotate and their 
orientations change, resulting in an inhomogeneous 
distribution of Cp for the ellipses. The plotted points for 
an ellipse in the R/c$ diagrams (Figs. 7-13) move hori- 
zontally, because 4 changes while R does not change 
during deformation. Seven cases of 0 were analyzed 
(i.e. 0 = O”, lo”, 20”, 40”, 60”, 80”, and 90”) as shown in 
Figs. 7-13. The degree of concentration in the orien- 
tation (@) is expressed by the density of points in the 
diagrams. 

As the strain increases in the range 3 < y < 6, a belt of 
concentrated points in the Rl@ diagram becomes clear 
(e.g. y = 4 in Fig. 7). The center of the concentrated area 
is around @ = -10” for larger R (R > 4), whereas it is 
found in the positive range of @ for smaller values of R 
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Fig. 7. Distribution patterns of the longest axes of ellipses in the R/G diagram for simple shear (0 = 0”) with respect toy. 
Horizontal and vertical axes indicate orientation (@) and aspect ratio(R), respectively. Large dots as markers show ellipses 

whose initial orientations were -89”. 

(2 < R < 3). The degree of concentration is denser at 
large values of R. However, it is very sparse at R < 1.5 
where the center of the concentrated points cannot be 
easily detected. 

For a strain value of y = 8 the concentration at R < 2 
becomes obscure (Fig. 7). When y = 10, the belt of 
concentration in the R/q5 diagram is split into two parts at 
R = 3 (Fig. 7). The belt above R = 3 lies in the top-center 
to bottom-right region. The belt below R = 3 is formed 
in the area from the top-left to bottom-center. The 
position of concentrated points of I$ shifts to the right as 
y increases. When C$ = 90” is reached, it also appears at @ 
= -90” for further increases in y. At y = 20, the belt of 
concentrated points is clearly split into three parts with 
respect to R (Fig. 7). This means three different pre- 
ferred orientations for different shaped elliptical bodies. 

Pure shear (0 = 90”) 

In the case of pure shear, all the orientations of the 
ellipses tend to gather at # = 0” (Fig. 8). Since the 
angular velocity is greater at larger values of R (Fig. 4f), 
the degree of concentration is higher at larger values of 
R. The distribution pattern in the R/q5 diagram is sym- 
metrical at @ = 0” for all values of E (Fig. 8). By E = 4, 
most of ellipses having R > 2 are already concentrated 
on the shear plane (Fig. 8). 

General non-coaxial deformation (0” < 0 < 90”) 

For the cases when 0” < 0 < 90” where both the simple 
shear and pure shear occur simultaneously, the distri- 
bution patterns in the RI@ diagram vary depending on 0 
(Figs. 9-13). When 0 = lo”, the pattern of distribution is 
similar to that of simple shear, particularly with respect 

@ = 90” (Pure Sheaf) 
Fig. 8. Distribution patterns in the R/q5 diagram for pure shear 
(0 = 90”). They are symmetric with respect to @ = 0”. Note that 

ellipses of R > 2 settle asymptotically on @ = 0” by e = 4. 

to ellipses having smaller aspect ratios where the belt of 
concentration is split into two parts with increasing 
strain as those for simple shear (cf. Fig. 9 with Fig. 7). 
This pattern does not occur when 0 is larger than or 
equal to 20”. When 0 = 20”, the distribution of ellipses 
having R > 2 concentrates as the strain increases, while 
those having R < 2 lose their concentration by D’ = 8 
(Fig. 10). 

As the value of 0 increases, the distribution patterns 
become more similar to those for pure shear. When 0 is 
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Fig. 9. Distribution patterns in the R/q3 diagram for 0 = IO”. The 
patterns of the ellipses of R 5 4 are similar to those for simple shear in 
Fig. 7. The patterns of the ellipses of R 5 2 become obscure at D’ = 7. 
In contrast the ellipses of R > 4 asymptotically settle on a belt of 
concentrationatD’= 15.,=0.7,2.2.3.2and5.2forD’= l,4,7and 

15, respectively. 

larger than or equal to 40”, ellipses that have R greater 
than R,, are clearly apt to approach the critical angle, @,, 
so that their distribution patterns results in a belt of 
concentration (Figs. 11-13). Thisconcentrationcan take 
place only by D’ = 4 (Figs. 1 l-13; cf. Fig. S), suggesting 
that their distribution patterns are almost stable with 

RI D’=l RI 0’=3 

Fig. 10. Distribution patterns in the R/q5 diagram for U = 20”. The 
patterns of the ellipses of R 5 2 become obscure at D’ = 8, whereas 
those of R > 2 asymptotically settle on a belt of concentration. E, = 0.X. 

2.1, 2.6 and 4.6 for D’ = 1, 3. 4 and 8, respectively. 

Fig. 11. Distribution patterns in the R/e diagram for 0 = 40”. The 
patterns result asymptotically in a belt of concentration by D’ = 4. 

t, = 1.0, 2.9, 3.8, and 4.8 for D’ = 1, 3. 4 and 5, respectively. 

increasing strain (cf. Passchier 1987). In contrast, 
ellipses having R smaller then R, always rotate (Figs. 4,5 
and 6a), although their distribution patterns are rather 
asymmetric with respect to 4 = 0 when 0 is smaller than 
80” (e.g. Figs. 9-12; cf. Hanmer 1990). When 0 = 80”, 
their distribution patterns are very similar to those for 
pure shear (cf. Fig. 13 with Fig. 8). 

-9or 

RI D'=l RI 0’=2 

~ 
0 90” 

D’=3 

_gr 

0=60” 
Fig. 12. Distribution patterns in the Rl@ diagram for 0 = 60”. The 
patterns result asymptotically in a belt of concentration by D’ = 4. Its 
degree of the concentration is higher than those for 8 = 40” in Fig. 11. 

< = I .3, 2.5, 3.7 and 5.0 for D’ = 1. 2, 3 and 4, respectively. 
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Fig. 13. Distribution patterns in the RI@ diagram for 0 = 80”. They 
are quite similar to those for pure shear (0 = 90”) shown in Fig. 8. 

E, = 1.4, 2.8,4.2 and 5.6 for D’ = 1,2,3 and 4, respectively. 

APPLICATION OF THEORETICAL MODELLING 
TO MYLONITES 

The theoretical distribution of shape preferred orien- 
tation of the rigid elliptical bodies presented above can 
be used to estimate both non-coaxial index angle, 0, and 
strain, D’ (or es), for mylonites in nature. In this section, 
the orientation and aspect ratio of elliptical porphyro- 
clasts (feldspar and garnet) in two mylonites are ana- 
lyzed as an example. 

Geological setting 

Two mylonite samples were collected from Ohnis- 
hiyama and Yanazawa within the Kashio Shear Zone 
along the Median Tectonic Line in central Honshu, 
Japan. The Ohnishiyama mylonite was derived from 
early Cretaceous Hiji tonalite (e.g. Hayama & Yamada 
1980), whereas the Yanazawa mylonite was derived 
from a Ryoke metachert (Michibayashi & Masuda 
1993). The metacherts in the Ryoke metamorphic belt 
were originally deposited as bedded-cherts as members 
of the Jurassic accretionary complex (e.g. Mizutani 
1987), and were subsequently transformed into meta- 
cherts during the early Cretaceous Ryoke metamorphic 
event (e.g. Miyashiro 1973). 

The mylonitic deformation took place during the late 
Cretaceous to early Tertiary age (e.g. Hayama & 
Yamada 1980, Shibata & Takagi 1987, Dallmeyer & 
Takasu 1992). Mylonitic foliation generally strikes 
NNE-SSW and dips, mostly at high angles, to the west. 
Mylonitic lineation on the foliation surface trends NNE- 
SSW and plunges gently towards north. The Median 
Tectonic Line strikes approximately NNE-SSW and 
dips vertically, and the trajectories of the mylonitic 
foliation are transected by the Median Tectonic Line 

with a slight obliquity (e.g. Takagi 1986). The shear 
sense of the mylonites was deduced as sinistral or top-to- 
the-south (e.g. Takagi 1986, Hayashi & Takagi 1987, 
Michibayashi & Masuda 1993, Yamamoto 1994), based 
on microstructural criteria (e.g. Berthe et al. 1979, 
Simpson & Schmid 1983, Lister & Snoke 1984). 

Microstructure of the mylonites 

Thin sections were made in a plane parallel to the 
lineation and perpendicular to the foliation. A brief 
description of the microstructures follows. 

The Ohnishiyama mylonite. In Fig. 14, the mylonite 
appears porphyroclastic. The porphyroclasts, consisting 
predominantly of plagioclase with rare K-feldspar, 
appear to be approximately elliptical in section, with 
grain size between several hundreds of microns to two 
millimeters. The matrix consists of a fine-grained mix- 
ture of quartz, plagioclase, K-feldspar and micas. The 
matrix foliation is defined by the banding of quartz and 
feldspar rich, and mica rich layers (Fig. 14). 

Most porphyroclast systems do not have conspicuous 
tails of feldspar that could result from recrystallization of 
the host grain. Instead, they are commonly surrounded 
by the other minerals such as fine grained quartz and 
micas (Fig. 14; cf. Takagi & Ito 1988). Their geometries 
are similar to B-type described by Hooper & Hatcher 
(1988). They can be divided into two subtypes; one 
involves the embayment of foliation, whereas the other 
does not exhibit a remarkable embayment of foliation 
(Fig. 14). The former subtype appears to have been 
developed around porphyroclasts with circular and 
weakly elliptical cross-sections (e.g. Fig. 14d), whereas 
the latter subtype usually developed around porphyro- 
clasts having larger aspect ratios (e.g. Fig. 14b). Locally, 
porphyroclasts occur with some tails. Their geometries 
are commonly similar to u-type of Passchier & Simpson 
(1986), but no clear &type have been observed. 

The Yanazawa mylonite. The Yanazawa mylonite is 
composed of quartz, plagioclase, K-feldspar, muscovite, 
biotite, garnet, apatite and tourmaline. The foliation 
can be defined by the parallel arrangement of the mica 
flakes. Plagioclase and garnet grains occur as porphyro- 
clasts, and are surrounded by a fine grained matrix of 
quartz and micas (Fig. 15). Plagioclase grains are larger 
than the matrix quartz grains, and are well represented 
by ellipses (Fig. 15), the longest axis of which is a few 
hundreds of microns. Garnet grains, that are relatively 
larger than the feldspar, show local elliptical shapes with 
longest axis oriented parallel to the foliation. Their 
porphyroclast systems occur with and without tails. Tails 
occupy at most a few percent of the area (volume) of 
their host porphyroclasts (Fig. 15). This indicates that 
recrystallization of the host porphyroclast resulted mod- 
erately in the fine-grained tails. Their geometries are 
similar to the u-type, but few &type geometries are 
apparent (Fig. 15). In contrast, the porphyroclast 
systems without tails usually have slightly asymmetric 
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Fig. 16. Distribution patterns (a), (c) & (e) and number distribution patterns (b), (d) & (f) of the longest axes of 
porphyroclasts measured in the mylonites. (a) & (b) feldspar porphyroclasts within the Ohnishiyama mylonite, (c) & (d) 
feldspar porphyroclasts within the Yanazawa mylonite, and (e) & (f) garnet porphyroclasts within the Yanazawa mylonitc. 

See text for an explanation. 

pressure shadows which consist predominantly of micas 
and quartz (Fig. 15c), and their geometries are similar to 
the @-type. 

Measurement of porphyroclasts 

The longest axis of each porphyroclast can be easily 
recognized, which allows measurement of the aspect 
ratio defined as the longest/shortest axes of the ellipse in 
the photomicrographs. The orientation of the longest 
axis with respect to the foliation is also measured, with 
the error of less than &5”. The error is mainly due to the 
slight undulation of the foliation. 

Figure 16 shows the results of the measurements with 
the numbers of each orientation. Each density distri- 
bution is shown in Figs. 16(b), (d) & (f). The density is 
determined as the ratio of the number of grains in a 
particular orientation (@) to the total number of grains, 
for the same range of R. These RI@ diagrams and their 
density distribution diagrams (Fig. 16) are compared 
with the theoretically predicted distribution patterns 
such as those in Figs. 7-13. 

Aspect ratios of feldspar porphyroclasts within the 
Ohnishiyama mylonite are dominantly in the range of 
1 to 3 (Fig. 16a). For 1 < R < 2, the orientation of the 
longest axis (4) is distributed homogeneously from -90” 
to 90”. For R > 2 the distribution of @ skews on the 
positive side and angle of their concentrations gradually 

changes from higher angle to zero as R increases (Fig. 
16b). Taking these features into account, 0 should be 
determined to be less than or equal to 20”, since these 
values of 0 can only produce such a homogeneous 
distribution (Figs. 7,9 and 10). We found by eye that the 
distribution of D’ = 4 (E, = 2.62, R, = 6.40) where 0 = 
20” is the most similar pattern and that of D’ = 4 (c = 
2.20, RI = 4.73) where 0 = 10” is the next. Any 
distribution patterns for simple shear (0 = 0’) does not 
resemble the Ohnishiyama pattern. 

Feldspar porphyroclasts within the Yanazawa mylo- 
nite (Figs. 16~ & d) are distributed in a relatively 
narrower range of the angle (@). For R < 2 the range of $ 
of the feldspar porphyroclasts is found to be between 
-70” to 70”, whereas for R > 2 the range becomes much 
narrower. The aspect ratio of feldspar is mostly around 
2.0. We found by eye that it is very difficult to fit this 
distribution pattern to those where 0 is smaller than or 
equal to 20”. The theoretical distribution for D’ = 5 (< = 
4.75, R, = 28.9) and 0 = 40” is most similar to the 
Yanazawa mylonite pattern. 

The 4 and R of garnet porphyroclasts within the 
Yanazawa mylonite are plotted in Fig. 16(e), which 
shows that the aspect ratios (R) of garnet are larger than 
those of feldspar, whereas the range of the angle (@) is 
much narrower than that of feldspar. Most garnet 
porphyroclasts are oriented in the range between -20 
and 20” (Figs. 16e & f). 
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Passchier (1987) proposed a method for estimating 
degree of non-coaxiality by measuring orientation of 
stable sink position (i.e. &). The method was not 
applied to our mylonites, because we cannot recognize 
which porphyroclast is in the stable sink position. 

VALIDITY OF THEORETICAL ASSUMPTIONS 
TO THE MYLONITES 

The results that D’ = 4 and 0 = 20” for the Ohnis- 
hiyama mylonite and D’ = 5 and 0 = 40” for the 
Yanazawa mylonite were obtained with the following 
assumptions: (1) the matrix of the mylonites is rep- 
resented by a Newtonian viscous material; (2) the initial 
orientations of the rigid minerals (feldspar and garnet) 
were random; (3) no change in the shape of the porphyr- 
oclasts occurred during the deformation; and (4) no 
interaction occurred between porphyroclasts. As these 
assumptions are very critical, the obtained results may 
require some revision. 

0ertel(1985) pointed out that the rheological proper- 
ties of rocks are hardly Newtonian and that different 
rheological properties of the matrix produce different 
results (see also Hanmer & Passchier 1991). Considering 
a non-Newtonian viscous matrix, discussion is focused 
on what kind of revision should be required to modify 
the calculation for a Newtonian matrix. 

Equations which yield the angular velocity for a non- 
Newtonian matrix can be expressed by the equations for 
a Newtonian matrix with the additional term which 
characterizes the oddness of the non-Newtonian behav- 
ior (Lea1 1975). Theoretical studies have shown that for 
simple shear an ellipsoidal particle will perpetually ro- 
tate in the non-Newtonian matrix, whereas for pure 
shear its long axis will asymptotically approach the 
perpendicular to the direction of compression (e.g. Lea1 
1975), as can be seen for the Newtonian matrix in this 
paper. Thus, for the simultaneous superposition of sim- 
ple and pure shear, critical angles of orientation should 
also exist, depending on the aspect ratio of the ellipse 
and non-coaxiality of deformation, which give zero 
angular velocity such as & and & for the Newtonian 
matrix. This means that the general scheme obtained for 
a Newtonian matrix is applicable to a non-Newtonian 
matrix, and that Figs. 7-13 are qualitatively acceptable 
as a first approximation. Ferguson (1979) stated the 
positive view that Jeffery’s (1922) Newtonian model is 
likely to be good approximation for non-Newtonian 
matrix except for very large strain. Therefore, the values 
of #, and @, for a Newtonian matrix are likely to be good 
approximation for a non-Newtonian matrix. 

Assumption (2), that the initial orientation was ran- 
dom, may be generally acceptable for minerals in mas- 
sive igneous rocks but unacceptable for minerals in well 
foliated and lineated metamorphic rocks. Since the 
Ohnishiyama mylonite is considered to be derived from 
granodiorite or tonalite (Hayama & Yamada 1980), 
assumption (2) is probably satisfied. However, it is 
rather doubtful whether the feldspar and garnet grains 

within the Yanazawa mylonite satisfy assumption (2) by 
being random. To check the initial preferred orien- 
tations of the feldspar and garnet grains, an examination 
was made of several Ryoke metacherts from the Hongu- 
san area (see Masuda et al. 1991), which were collected 
far from the Median Tectonic Line and are not myloni- 
tized. 

The metacherts consist predominantly of equigranu- 
lar polygonal and irregular shaped quartz grains with 
small amounts of feldspar (plagioclase), micas, garnet, 
apatite, and opaque minerals. Although they have very 
weak foliation defined by the parallel arrangement of 
micas, they exhibit no clear lineation. Quartz and feld- 
spar grains show no sign of shape preferred orientation. 
Thus, feldspar grains within the Yanazawa mylonite 
would allow assumption (2) to be made. As for garnet 
grains, a shape preferred orientation occurs weakly 
within metacherts in the Hongusan area, where the 
longest axis was vaguely oriented parallel to the plane of 
foliation. This will result in a more concentrated orien- 
tation pattern of garnet than that of feldspar when the 
metacherts deform plastically. The difference in the 
distribution patterns in the Rl@ diagram between garnet 
and feldspar within the Yanazawa mylonite is presum- 
ably attributed to the difference in their initial orien- 
tation pattern. Hence, the distribution pattern of garnet 
grains within the Yanazawa mylonite (Fig. 16~) could 
violate assumption (2). 

Assumption (3), that no porphyroclasts have changed 
their shape during deformation, may not be true, since 
the mylonitization of igneous rocks in the Kashio shear 
zone is known to be characterized by the grain size 
reduction of feldspar (Echigo & Kimura 1973, Takagi 
1986). During mylonitization, the breaking and abrasion 
of feldspar grains would occur rather actively, and 
dynamic recrystallization at the margins of the porphyr- 
oclasts would also result in the grain size reduction of 
porphyroclasts. However, our analysis is not based on 
grain size but on grain shape. If effect of abrasion and 
dynamic recrystallization was equal all around the 
grains, this would not alter the aspect ratio, R. If the 
breaking of the many grains results statistically in similar 
preferred orientations of the long axes of the broken 
grains, it does not disturb the validity of the assumption 
(3). At the moment, we cannot prove nor disprove that 
assumption (3) is fulfilled in the mylonites. 

Recently, a series of experiments in two dimensions 
demonstrated the influence of the concentration of par- 
ticles on the development of a shape preferred orien- 
tation (Ildefonse & Fernandez 1988, Ildefonse et al. 
1992a,b). Their result is that particle rotation is signifi- 
cantly disturbed when the distance between adjacent 
particles of equal size is shorter than their length. As the 
porphyroclasts within the two mylonites are adequately 
distant from neighbouring porphyroclasts, as shown in 
Figs. 14 and 15, assumption (4) is well satisfied for the 
mylonites. 

As a consequence, our estimations of non-coaxiality 
for these mylonites are probably acceptable as a first 
approximation, and the deformation for the Yanazawa 



T. MASUDA, K. MICHIBAYASHI and H. OHTA 

mylonite proceeded under a relatively higher proportion 
of pure shear component (i.e. 0 = 40”) than that for the 
Ohnishiyama mylonite (i.e. 0 = 20”). 

CONCLUDING REMARKS ON THE DEGREE OF 
NON-COAXIALITY 

There are many methods available for estimating 
finite strain (e.g. Ramsay & Huber 1983). However, 
there has been less discussion of methods for estimating 
the degree of non-coaxiality (e.g. Passchier 1987, 
Vissers 1989, Cowan 1990, Wallis 1992). We emphasize 
that the analysis of shape preferred orientation of por- 
phyroclasts demonstrated above is a possible method for 
determining the degree of non-coaxiality in shear zones. 

The conclusion reached above indicates that defor- 
mation within the mylonites contains a certain amount 
of pure shear component superimposing on a simple 
shear component as 0” < 0 < 40”. Passchier (1987) 
estimated a kinematical vorticity number between 0.5 
and 0.8, possibly 0.6 (corresponding to 15” < 0 < 40”) 
for his mylonite. Hanmer (1990) also pointed out that 
non-ideal shear deformation (0 > 0”) produced his 
mylonites. These examples strongly suggest that defor- 
mation of mylonites in many shear zones may be not 
ideal simple shear but general non-coaxial deformation 
with a pure shear component. 
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